References by topic
This is most of what’s in my Zotero bibliography for this class arranged by topic.
Main texts
Foundational books and chapters
Cairo, A. (2019). How charts lie: Getting smarter about visual information (First edition). W. W. Norton & Company.
Wickham, H., Çetinkaya-Rundel, M., & Grolemund, G. (2023). R for data science: Import, tidy, transform, visualize, and model data (2nd edition). O’Reilly. https://r4ds.hadley.nz/
Wilke, C. (2019). Fundamentals of data visualization: A primer on making informative and compelling figures (First edition). O’Reilly. https://clauswilke.com/dataviz/
Yau, N. (2013). Data points: Visualization that means something. John Wiley & Sons, Inc.
General references
References, frameworks, and grammar of graphics
BBC. (2010). Hans Rosling’s 200 Countries, 200 Years, 4 Minutes - The Joy of Stats - BBC Four. https://www.youtube.com/watch?v=jbkSRLYSojo
Chang, W. (2018). R graphics cookbook: Practical recipes for visualizing data (Second edition). O’Reilly. https://r-graphics.org/
Cogley, B., & Setlur, V. (2022). Functional Aesthetics for Data Visualization. John Wiley and Sons.
D’Ignazio, C. (2015). What would feminist data visualization look like? https://civic.mit.edu/feminist-data-visualization.html
D’Ignazio, C., & Klein, L. F. (2020). Data feminism. The MIT Press. https://data-feminism.mitpress.mit.edu/
Du Bois, W. E. B., Battle-Baptiste, W., & Rusert, B. (2018). W.E.B Du Bois’s data portraits: Visualizing Black America (First edition). The W.E.B. Du Bois Center At the University of Massachusetts Amherst ; Princeton Architectural Press.
Gilmore, R. W. (2023). Abolition Geography.
Kirk, A. (2016). Data visualisation: A handbook for data driven design. SAGE.
Kosara, R. (2019). The DataSaurus, Anscombe’s Quartet, and why summary statistics need to be taken with a grain of salt. https://www.youtube.com/watch?v=RbHCeANCbW0
Munzner, T. (2014). Visualization Analysis and Design. A K Peters/CRC Press. https://doi.org/10.1201/b17511
Ribecca, S. (2024). The Data Visualisation Catalogue. https://datavizcatalogue.com/
Schwabish, J. (n.d.-a). Catherine D’Ignazio and Lauren Klein (142). Retrieved January 30, 2024, from https://policyviz.com/podcast/episode-142-catherine-dignazio-and-lauren-klein/
Schwabish, J. (n.d.-b). Sarah Williams (191). Retrieved January 18, 2024, from https://policyviz.com/podcast/episode-191-sarah-williams/
Schwabish, J. (2021). Better Data Visualizations : A Guide for Scholars, Researchers, and Wonks. Columbia University Press.
Wickham, H. (2010). A Layered Grammar of Graphics. Journal of Computational and Graphical Statistics, 19(1), 3–28. https://doi.org/10.1198/jcgs.2009.07098
Wickham, H., Çetinkaya-Rundel, M., & Grolemund, G. (2023). R for data science: Import, tidy, transform, visualize, and model data (2nd edition). O’Reilly. https://r4ds.hadley.nz/
Wilke, C. (2019). Fundamentals of data visualization: A primer on making informative and compelling figures (First edition). O’Reilly. https://clauswilke.com/dataviz/
Aesthetics & styling
Color, visual perception, annotations, text, and styleguides
- Viz Palette (2019)
- Aisch (2019)
- Bertini & Stefaner (n.d.)
- Brewer (2006)
- Gramazio et al. (2017)
- Datawrapper (2021)
- France (2020)
- Heer & Bostock (2010)
- Kebonye et al. (2023)
- Kim et al. (2021)
- Kirk (2015)
- Liu & Heer (2018)
- Muth (2022)
- Muth (2024c)
- Muth (2024b)
- Muth (2024a)
- Skau & Kosara (2016)
- Setlur & Stone (2016)
- Urban Institute (2023)
- World Health Organization (2023)
Aisch, G. (2019). Chroma.js palette helper. https://gka.github.io/palettes
Bertini, E., & Stefaner, M. (n.d.). Color with Karen Schloss (119). Retrieved February 7, 2024, from https://datastori.es/119-color-with-karen-schloss/
Brewer, C. A. (2006). Basic Mapping Principles for Visualizing Cancer Data Using Geographic Information Systems (GIS). American Journal of Preventive Medicine, 30(2), S25–S36. https://doi.org/10.1016/j.amepre.2005.09.007
Datawrapper. (2021). What to consider when choosing colors for data visualization. https://academy.datawrapper.de/article/140-what-to-consider-when-choosing-colors-for-data-visualization
France, T. (2020). Choosing Fonts for Your Data Visualization, Nightingale. In Nightingale. https://nightingaledvs.com/choosing-fonts-for-your-data-visualization/
Gramazio, C. C., Laidlaw, D. H., & Schloss, K. B. (2017). Colorgorical: Creating discriminable and preferable color palettes for information visualization. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2016.2598918
Heer, J., & Bostock, M. (2010). Crowdsourcing graphical perception: Using mechanical turk to assess visualization design. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 203–212. https://doi.org/10.1145/1753326.1753357
Kebonye, N. M., Agyeman, P. C., Seletlo, Z., & Eze, P. N. (2023). On exploring bivariate and trivariate maps as visualization tools for spatial associations in digital soil mapping: A focus on soil properties. Precision Agriculture, 24(2), 511–532. https://doi.org/10.1007/s11119-022-09955-7
Kim, D. H., Setlur, V., & Agrawala, M. (2021). Towards Understanding How Readers Integrate Charts and Captions: A Case Study with Line Charts. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–11. https://doi.org/10.1145/3411764.3445443
Kirk, A. (2015). Make grey your best friend. In Visualising Data. https://visualisingdata.com/2015/01/make-grey-best-friend/
Liu, Y., & Heer, J. (2018). Somewhere Over the Rainbow: An Empirical Assessment of Quantitative Colormaps. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–12. https://doi.org/10.1145/3173574.3174172
Muth, L. C. (2022). What to consider when using text in data visualizations. In Datawrapper. https://blog.datawrapper.de/text-in-data-visualizations/
Muth, L. C. (2024a). How to choose a color palette for choropleth maps. In Datawrapper. https://blog.datawrapper.de/how-to-choose-a-color-palette-for-choropleth-maps/
Muth, L. C. (2024b). How to choose an interpolation for your color scale - Datawrapper Blog. In Datawrapper. https://blog.datawrapper.de/interpolation-for-color-scales-and-maps/
Muth, L. C. (2024c). Which fonts to use for your charts and tables. In Datawrapper. https://blog.datawrapper.de/fonts-for-data-visualization/
Setlur, V., & Stone, M. C. (2016). A Linguistic Approach to Categorical Color Assignment for Data Visualization. IEEE Transactions on Visualization and Computer Graphics, 22(1), 698–707. https://doi.org/10.1109/TVCG.2015.2467471
Skau, D., & Kosara, R. (2016). Arcs, Angles, or Areas: Individual Data Encodings in Pie and Donut Charts. Computer Graphics Forum, 35(3), 121–130. https://doi.org/10.1111/cgf.12888
Urban Institute. (2023). Urban Institute Data Visualization style guide. http://urbaninstitute.github.io/graphics-styleguide/
Viz Palette. (2019). https://projects.susielu.com/viz-palette
World Health Organization. (2023). WHO Data Design Language v.0.9.2. https://apps.who.int/gho/data/design-language/
Understanding data
Decision-making, uncertainty, missing data, and logical fallacies
- Aisch (2016)
- Bertini & Stefaner (n.d.-a)
- Bertini & Stefaner (n.d.-b)
- Cox et al. (2022)
- Correll & Gleicher (2014)
- Correll et al. (2018)
- Etter (2023)
- Hamel et al. (2020)
- Hamel et al. (2021)
- Kay et al. (2016)
- Krackov & Marikos (2021)
- Kay (2024)
- Kirk (2016)
- Kirk (n.d.)
- Lee et al. (2021)
- mimimimimi (2024)
- Nation (2024)
- Nyame-Mensah (2022)
- Pillai et al. (2024)
- Sadler (2016)
- Schwabish (n.d.)
- Silver (2015)
- Simeoni (2023)
- Smith (2023)
Aisch, G. (2016). Why we used jittery gauges in our live election forecast. In vis4.net. https://vis4.net/blog/jittery-gauges-election-forecast
Bertini, E., & Stefaner, M. (n.d.-a). Cognitive Bias and Visualization with Evanthia Dimara (116). Retrieved February 14, 2024, from https://datastori.es/116-cognitive-bias-and-visualization-with-evanthia-dimara/
Bertini, E., & Stefaner, M. (n.d.-b). Visualizing Uncertainty with Jessica Hullman and Matthew Kay (134). Retrieved January 30, 2024, from https://datastori.es/134-visualizing-uncertainty-with-jessica-hullman-and-matthew-kay/
Correll, M., & Gleicher, M. (2014). Error Bars Considered Harmful: Exploring Alternate Encodings for Mean and Error. IEEE Transactions on Visualization and Computer Graphics, 20(12), 2142–2151. https://doi.org/10.1109/TVCG.2014.2346298
Correll, M., Moritz, D., & Heer, J. (2018). Value-Suppressing Uncertainty Palettes. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–11. https://doi.org/10.1145/3173574.3174216
Cox, C., Amin, K., Kates, J., & Published, J. M. (2022). Why Do Vaccinated People Represent Most COVID-19 Deaths Right Now? In KFF. https://www.kff.org/policy-watch/why-do-vaccinated-people-represent-most-covid-19-deaths-right-now/
Etter, E. (2023). Data Visualization: A Subjective Lens on Reality. In Nightingale. https://nightingaledvs.com/data-visualization-a-subjective-lens-on-reality/
Hamel, L., Kirzinger, A., Muñana, C., & Published, M. B. (2020). KFF COVID-19 Vaccine Monitor: December 2020. In KFF. https://www.kff.org/coronavirus-covid-19/report/kff-covid-19-vaccine-monitor-december-2020/
Hamel, L., Lopes, L., & Published, M. B. (2021). KFF COVID-19 Vaccine Monitor: What Do We Know About Those Who Want to “Wait and See” Before Getting a COVID-19 Vaccine? In KFF. https://www.kff.org/coronavirus-covid-19/poll-finding/kff-covid-19-vaccine-monitor-wait-and-see/
Kay, M. (2024). Mjskay/ggdist. https://github.com/mjskay/ggdist
Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus?: User-centered Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 5092–5103. https://doi.org/10.1145/2858036.2858558
Kirk, A. (n.d.). Alvin Chang (S2 E6). Retrieved February 2, 2024, from https://visualisingdata.com/2020/12/explore-explain-s2-e6-alvin-chang/
Kirk, A. (2016). Gauging election reaction. In Visualising Data. https://visualisingdata.com/2016/11/gauging-election-reaction/
Krackov, A., & Marikos, S. (2021). Asterisk Nation: One Tribe’s Challenge to Find Data About its Population. In Nightingale. https://nightingaledvs.com/asterisk-nation-one-tribes-challenge-to-find-data-about-its-population/
Lee, C., Yang, T., Inchoco, G. D., Jones, G. M., & Satyanarayan, A. (2021). Viral Visualizations: How Coronavirus Skeptics Use Orthodox Data Practices to Promote Unorthodox Science Online. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–18. https://doi.org/10.1145/3411764.3445211
mimimimimi. (2024). MimiOnuoha/missing-datasets. https://github.com/MimiOnuoha/missing-datasets
Nation, Z. (2024). Zonination/perceptions. https://github.com/zonination/perceptions
Nyame-Mensah, A. (2022). When Oversimplification Obscures. In Nightingale. https://nightingaledvs.com/when-oversimplification-obscures/
Pillai, D., Artiga, S., Hamel, L., Schumacher, S., Kirzinger, A., Rao, A., & Published, A. K. (2024). Understanding the Diversity in the Asian Immigrant Experience in the U.S.: The 2023 KFF/LA Times Survey of Immigrants. In KFF. https://www.kff.org/racial-equity-and-health-policy/poll-finding/understanding-the-diversity-in-the-asian-immigrant-experience/
Sadler, R. C. (2016). How ZIP codes nearly masked the lead problem in Flint. In The Conversation. http://theconversation.com/how-zip-codes-nearly-masked-the-lead-problem-in-flint-65626
Schwabish, J. (n.d.). Joe Sharpe and Mike Orwell (242). Retrieved February 13, 2024, from https://policyviz.com/podcast/episode-242-joe-sharpe-and-mike-orwell/
Silver, N. (2015). The Most Diverse Cities Are Often The Most Segregated. In FiveThirtyEight. https://fivethirtyeight.com/features/the-most-diverse-cities-are-often-the-most-segregated/
Simeoni, F. (2023). Querying the Quantification of Queer. In Nightingale. https://nightingaledvs.com/querying-the-quantification-of-the-queer/
Smith, N. (2023). How not to be fooled by viral charts. https://www.noahpinion.blog/p/how-not-to-be-fooled-by-viral-charts
Storytelling
Telling a story and making a point
Fratczak, M. (2023). Can Datavis Make Unpalatable Data More Enjoyable? In Nightingale. https://nightingaledvs.com/can-datavis-make-unpalatable-data-more-enjoyable/
Hullman, J., & Diakopoulos, N. (2011). Visualization Rhetoric: Framing Effects in Narrative Visualization. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2231–2240. https://doi.org/10.1109/TVCG.2011.255
Seaberry, C. (2018). CT Data Story: Housing Segregation in Greater New Haven. DataHaven. https://ctdatahaven.org/reports/ct-data-story-housing-segregation-greater-new-haven
Spatial data
Spatial is special
Ericson, M. (2011). When Maps Shouldn’t Be Maps. In ericson.net. https://www.ericson.net/content/2011/10/when-maps-shouldnt-be-maps/
Nussbaumer Knaflic, C. (n.d.). Maps with Kenneth Field (41). Retrieved March 27, 2024, from https://storytellingwithdata.libsyn.com/storytelling-with-data-41-maps-with-kenneth-field
Simmon, R. (2024). From Space to Story in Data Journalism, Nightingale. In Nightingale. https://nightingaledvs.com/from-space-to-story-in-data-journalism/
US Census Bureau. (2021). Appendix B: Measures of Residential Segregation. In Guidance for Housing Patterns Data Users. https://www.census.gov/topics/housing/housing-patterns/guidance/appendix-b.html
Wiseman, A. (2015). Bad Maps Are Everywhere These Days. Here’s How to Avoid Being Fooled. Bloomberg CityLab. https://www.bloomberg.com/news/articles/2015-06-25/how-to-avoid-being-fooled-by-bad-maps
Wong, D. (2024). The SAGE Handbook of Spatial Analysis. SAGE Publications, Ltd. https://doi.org/10.4135/9780857020130
Social justice & ethics
Data viz for action in the real world